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Introduction and Motivation

I There are many applications in mathematics and engineering
where proofs involving functions such as ln, exp, sin, cos, etc.
are required.

I In their formalization of the Prime Number Theorem, Avigad
and his colleagues (from CMU), spent much time proving
simple facts involving logarithms.

I Other applications are not difficult to find.
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Introduction and Motivation, Cont’d

I Our Starting Point: The theory of Real Closed Fields (RCF) -
that is, the real numbers with addition and multiplication - is
decidable.

I However: Inequalities involving elementary functions lie
outside the scope of decision procedures, and can only be
solved using heuristic methods. (Richardson’s Theorem)

I Our Idea: Replace each occurrence of an elementary function
by an upper or lower bound, as appropriate. Then, supply the
reduced algebraic inequality problem to a decision procedure
for the theory of real closed fields (RCF).
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Related Work

I Tarski found the first quantifier elimination procedure which
solves problems over the reals involving + - * / in the 1930s.

I Collins introduced the first feasible method (cylindrical
algebraic decomposition) in 1975.

I One freely-available implementation is the QEPCAD decision
procedure.

I HOL Light provides REAL QELIM CONV and REAL SOS .

I Other heuristic procedures such as Hunt et. al. and Tiwari.

I Mũnoz and Lester’s method is based on upper and lower
bounds for the elementary functions, coupled with interval
arithmetic.
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Families of Lower and Upper Bounds

Functions f : (R, N) → R and f : (R, N) → R are closed under Q
such that:

f (x , n) ≤ f (x) ≤ f (x , n),

f (x , n) ≤ f (x , n + 1)

f (x , n + 1) ≤ f (x , n)

limx→∞ f (x , n) = f (x) = limx→∞ f (x , n)
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Bounds for the Exponential Function

exp(x , n) =

2(n+1)+1∑
i=0

x i

i !
if −1 ≤ x < 0

exp(x , n) =

2(n+1)∑
i=0

x i

i !
if −1 ≤ x < 0

exp(0, n) = exp(0, n) = 1

exp(x , n) =
1

exp(−x , n)
if 0 < x ≤ 1

exp(x , n) =
1

exp(−x , n)
if 0 < x ≤ 1
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Bounds for the Exponential Function, Cont’d

exp(x , n) = exp(x/m, n)m if x < −1, m = −bxc

exp(x , n) = exp(x/m, n)m if x < −1, m = −bxc

exp(x , n) = exp(x/m, n)m if 1 < x , m = b−xc

exp(x , n) = exp(x/m, n)m if 1 < x , m = b−xc
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Bounds for the Logarithmic Function

ln(x , n) =
2n∑
i=1

(−1)i+1 (x − 1)i

i
if 1 < x ≤ 2

ln(x , n) =
2n+1∑
i=1

(−1)i+1 (x − 1)i

i
if 1 < x ≤ 2

ln(1, n) = ln(1, n) = 0

ln(x , n) = − ln

(
1

x
, n

)
, if 0 < x < 1

ln(x , n) = − ln

(
1

x
, n

)
, if 0 < x < 1
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Bounds for the Logarithmic Function, Cont’d

ln(x , n) = m ln(2, n) + ln(y , n) if x > 2, x = 2my , 1 < y ≤ 2

ln(x , n) = m ln(2, n) + ln(y , n) if x > 2, x = 2my , 1 < y ≤ 2

B. Akbarpour and L. C. Paulson PDPAR 2006 11 / 25



Outline Introduction and Motivation Related Work Bounds for Elementary Functions Example Problems Solved Conclusions Future Works

-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5  6  7  8  9  10

lower bound of ln(x)with n=1
lower bound of ln(x)with n=2

ln(x)
upper bound of ln(x)with n=1
upper bound of ln(x)with n=2

B. Akbarpour and L. C. Paulson PDPAR 2006 12 / 25



Outline Introduction and Motivation Related Work Bounds for Elementary Functions Example Problems Solved Conclusions Future Works

A Simple Example Concerning Exponentials

I Main Goal:

0 ≤ x ≤ 1 =⇒ exp x ≤ 1 + x + x2.

I It suffices to prove this algebraic formula:

0 ≤ x ≤ 1 =⇒ exp (x , n) ≤ 1 + x + x2

I Case Analysis:

x = 0 or 0 < x ≤ 1
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A Simple Example Concerning Exponentials, Cont’d

I If x = 0 then exp(0, n) = 1 ≤ 1 + 0 + 02 = 1, trivially.

I If 0 < x ≤ 1, then

exp(x , n) =

2(n+1)+1∑
i=0

(−x)i

i !

−1

Setting n = 0, it suffices to prove(
1 + (−x) +

(−x)2

2
+

(−x)3

6

)−1

≤ 1 + x + x2.
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An Extended Example Concerning Logarithms

I Main Goal:

−1

2
< x ≤ 3 =⇒ ln(1 + x) ≤ x .

I It suffices to prove this algebraic formula:

1

2
< 1 + x ≤ 4 =⇒ ln(1 + x , n) ≤ x

I Case Analysis:

1

2
< 1+x < 1 or 1+x = 1 or 1 < 1+x ≤ 2 or 2 < 1+x ≤ 4
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An Extended Example Concerning Logarithms, Cont’d

I If 1 + x = 1, then x = 0 and ln(1 + x , n) = ln(1, n) = 0 ≤ x .

I If 1 < 1 + x ≤ 2, then

ln(1 + x , n) =
2n+1∑
i=1

(−1)i+1 ((1 + x)− 1)i

i
=

2n+1∑
i=1

(−1)i+1 x i

i

Setting n = 0 yields ln(1 + x , n) = x and reduces our
inequality to the trivial x ≤ x .
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An Extended Example Concerning Logarithms, Cont’d

I If 2 < 1 + x ≤ 4, then we need to find a positive integer m
and some y such that 1 + x = 2my and 1 < y ≤ 2. Clearly
m = 1. In this case, putting n = 0, we have

2n+1∑
i=1

(−1)i+1 (2− 1)i

i
+

2n+1∑
i=1

(−1)i+1 (y − 1)i

i
= 1 + (y − 1)

= y

≤ 2y − 1

= x .
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An Extended Example Concerning Logarithms, Cont’d

I If 1
2 < 1 + x < 1, then 1 < 1/(1 + x) < 2. Putting n = 1, we

have

ln(1 + x , n) = − ln

(
1

1 + x
, n

)
= −

2n∑
i=1

(−1)i+1
( 1
1+x − 1)

i

i

=
2n∑
i=1

(−1)i

i

(
−x

1 + x

)i

=

(
x

1 + x

)
+

(
1

2

)(
−x

1 + x

)2

.
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An Extended Example Concerning Logarithms, Cont’d

Now (
x

1 + x

)
+

(
1

2

)(
−x

1 + x

)2

≤ x ⇐⇒

x(1 + x) +
1

2
x2 ≤ x(1 + x)2 ⇐⇒

x +
3

2
x2 ≤ x + 2x2 + x3 ⇐⇒

−1

2
x2 ≤ x3 ⇐⇒

−1

2
≤ x

which holds because 1
2 < 1 + x .
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Logarithmic Problems

−1

2
≤ x ≤ 3 =⇒ x

1 + x
≤ ln(1 + x) ≤ x

0 ≤ x ≤ 3 =⇒ |ln(1 + x)− x | ≤ x2

|x | ≤ 1

2
=⇒ |ln(1 + x)− x | ≤ 2x2

0 ≤ x ≤ 0.5828 =⇒ |ln(1− x)| ≤ 3x

2
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Exponential Problems

0 ≤ x ≤ 1 =⇒ e(x−x2) ≤ 1 + x

−1 ≤ x ≤ 1 =⇒ 1 + x ≤ ex

−1 ≤ x ≤ 1 =⇒ ex ≤ 1

1− x

−1

2
≤ x =⇒ ex/(1+x) ≤ 1 + x

−1 ≤ x ≤ 0 =⇒ ex ≤ 1 +
x

2

0 ≤ |x | ≤ 1 =⇒ 1

4
|x | ≤ |ex − 1| ≤ 7

4
|x |
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Conclusions

I Our preliminary investigations are promising.

I We have used the method described above to solve about 30
problems.

I We manually reduced each problem to algebraic form, then
tried to solve the reduced problems using three different tools.

I QEPCAD solved all of the problems, usually taking less than
one second.

I HOL Light’s sum-of-squares tool REAL SOS solved all of the
problems but two, again usually in less than a second.

I HOL Light’s quantifier elimination tool REAL QELIM CONV
solved all of the problems but three. It seldom required more
than five seconds
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Future Works

I Much work remains to be done before this procedure can be
automated.

I We need to experiment with a variety of upper and lower
bounds.

I Case analyses will still be inevitable, so we need techniques to
automate them in the most common situations.

I We have to evaluate different ways of deciding the RCF
problems that are finally generated.
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