Mothers of Pipelines

Sava Krsti¢, Robert Jones, John O’ Leary

Intel Corporation

PDPAR 2006

Pipeline Verification: P vs. ISA

Prove that a high-level model P of a pipelined processor is
faithful to the given instruction set architecture (ISA).

1 Both P and ISA are seen as transition systems; the goal is
to prove that ISA in some reasonable sense simulates P.

I[SA

States: 7 = (pc : IAddr, rf : RF, dmem : DMem, imem : IMem)

Transitions:

guard: imem.pc = ... | action

opcl dest srcl src2 pc:=pc+4 rf.dest :=alu opcl (rf.srcl) (rf.src2)
opc2 dest srcl 1mm pc:=pc+4 rf.dest ;= alu opc2 (rf.srcl) imm

ld dest srcl offset pc:=pc+4 rf.dest := dmem.(rf.srcl + offset)

st srcl dest offset pc:=pc+ 4 dmem.(rf.dest 4+ offset) := rf.srcl

opc3 reg offset

o br_target it br_taken
PE= pe+4

: ., Where
otherwise

br_target = target pc offset
br_taken = taken opc3 (rf.reg)

dest, srcl, src2, reg . Reg
opcl : {add, sub, mult}

imm, offset . Word

opc2 : {addi, subi, multi} opcd : {beqz, bnez, j}

Example: P = DLX

States of P: (pc,rf,dmem, imem,p1,p>,Pp3,Pa)

\ P1 P2 P33 Ppa P1 P2 P33 Ppa P1 P2 P33 pa
LA ISR JIA
pi P> P53 Pa 0 »5 p3 py p1 D P53 Pa
[regular cycle] [branch taken] [stall for load]
1) pa writes back to rf and retires
@ p3 does memory access
3 alu computes result/mem. address for po
@ p1 9ets data from rf or by forwarding;
in the branch case, target/taken computed
© new p) is fetched; pc incremented
® like @, plus updating pc with computed target

Simulating P in ISA

First need to map states of P to ISA states:

P-state =

ISA-state = . . --

Flushing

Mapping states of P to ISA states:

P-state = PP opsope H B N

O o B

004w B = =

0ooe R EE

poEE T T
6

ISA-state =

The Burch-Dill Method for DLX

D DLX states
[l dix_step : D — D DLX transitions

la:D—T flushing function

dlx_st
D x_step

D

T heorem Qo o'

[isa_step]

z A

[CAV 94]

The Burch-Dill Method in General

[P =1 X PipeRegs states of P
| pstep: P — P transitions of P
la:P—1 flushing function

| Correctness Theorem for P:
p_step

P P
Q o
T (isa_step) T

[l For proof, don’'t need defs of alu, target, taken, and only need
basic read-write array properties of rf and mem

1 Correctness thm expressed in the language of SMT solvers

Ll ...but it's huge for complex P. Must partition the thm.

8

The MOP Method

Put a highly-nondeterministic “machine” MOP between P and
ISA and deduce the P vs. [SA correctness from P vs. MOP and
MOP vs. ISA.

1 MOP is derived from [ISA and the features of P
1 MOP is the mother of many pipelines:

| Out-of-order execution and non-determinism in P are OK

| Potential to systematically partition correctness theorem

9

MOP: Starting Observations

1 One can formalize “instructions-in-flight”" —parcels
.l Parcels form a poset of finite height—yprogress ordering
1 With every state of P we can associate a set of parcels

| At each cycle of execution of P:
pc, rf, mem get updated
some parcels get in (fetched)
some parcels get out (retired)

some parcels progress

10

Parcels

instr Instr |
my_pc . |1Addr |
dest, srcl, src2 . Reg |
imm . Word |
opc . Opcode |
Parcel = datal, data?2 : Word |
res, mem_addr : Word |
tkn @ bool |
next_pc . |Addr |
wb 1 {L, T}
pc_upd : {1 s, m, T}

Definition of MOP

States: M =17 x (q: N — Parcel, head: N, tail: N)

pc rf dmem imem

! 1

head tail

Transitions: Atomic actions occurring in executions

Transitions

def i = imem.pc fetch
grd length = 0 V q.tail.pc_upd #= L

act q.(tail + 1) := empty_parcel[instr — i, my_pc — pc] tail := tail + 1
def p=gq.j decode j
grd head < j < tail —(decoded p)

act p .= decode p

1 16 more rules: datal rf, datal _forward, result, mem addr,

write_back j, load j, store j, branch_target j, branch_taken j,
next_pc_branch j, next_pc_nonbranch j, pc_update, speculate,
prediction_ok j, squash, retire

13

Confluence

MOP# = MOP without fetch

Theorem MOP# is terminating.

Theorem Both MOP and MOP#
are locally confluent.

(=~ 400 little theorems)

\4

14

Local Confluence: About Proof

Most cases are resolved trivially:

Some are interesting:

Y/

o
retir/ k\taqueue j
o o
datarfx %tire
o

15

Flushing and Burch-Dill for MOP

| Define
flushed MOP state = its g-component is empty

1 Given m € M, any MOP# run m — m1 — mo — ...
... terminates . ..
...in the same final flushed state m/

I Define
a(m) = the ISA-component of m/

1 Burch-Dill Theorem for MOP:

M & M

(87

e’ (for any MOP rule p)

[isa_step]

A A

16

Simulating Microarchitectures in MOP

Theorem To verify P against ISA, it suffices to find g: P — M
such that, for every p € P, 3 (p_step p) is reachable from 3 p.

Proof:
D p_step p/
B 6]

m' <— mam_steps

Y «—— isa_steps

17

Partitioning the Simulation Proof

D p_step p/
&) s
m ° o o o ° ° e m’

] How to find a sequence of MOP transitions from m to m/'?

1 —Using sequence of ‘“‘quasi P-states” from p to p’:

<'U]_,'UQ,'U3,.--,'Un> — P
o <’U/1,’UQ,U3,...,’Un> = p1
~ (U1, 05,03, ..., Un) = P2 v, = next_v; (vi,...,vp)
N>
~ <’U/1,'U/2,’Ué,...,?);l> — Pn-1

/" I
~ (V],V5,V3,...,0,) = D
1 ...get the corresponding MOP states m,my,...,m,_1,m’

and short MOP paths from m; to m;4 1.

18

What We've Done

1 Models of ISA,MOP,DLX in reFLect
| Local confluence proofs with CVVCL

I Simulation proofs for DLX (via short paths in MOP) with
CVvCL

19

To Do

1 Case study of an out-of-order processor model

| Refining the method

Systematic ways of defining 5. P — M and finding short
paths to connect 3(p) with G(p_step p) in MOP

Controlling term size in subgoals (heuristics for
expanding function definitions vs. treating them as
uninterpreted)

| Fast and flexible SMT solvers

20

Selection of Related Work

Burch & Dill [CAV 94]

Damm & Pnueli [CHARME 97]

Shen & Arvind [Formal Techn. for Hardware 98]
Skakkebaxk & al. [CAV 98]

Hosabettu & al. [CAV 00]

Lahiri & Bryant [CAV 03]

o oo 0o O o oo

Manolios & Srinivasan [[CCAD 05]

21

