Mothers of Pipelines

Sava Krstić, Robert Jones, John O' Leary Intel Corporation

PDPAR 2006

Pipeline Verification: P vs. ISA

Prove that a high-level model P of a pipelined processor is faithful to the given instruction set architecture (ISA).

* Both P and ISA are seen as transition systems; the goal is to prove that ISA in some reasonable sense simulates P.

States: $\mathcal{I} = \langle pc : \mathsf{IAddr}, rf : \mathsf{RF}, dmem : \mathsf{DMem}, imem : \mathsf{IMem} \rangle$

Transitions:

guard: $imem.pc = \dots$	action
opc1 dest src1 src2	pc := pc + 4 $rf.dest := alu opc1 (rf.src1) (rf.src2)$
opc2 dest src1 imm	pc := pc + 4 $rf.dest := alu opc2 (rf.src1) imm$
Id dest src1 offset	pc := pc + 4 $rf.dest := dmem.(rf.src1 + offset)$
st src1 dest offset	pc := pc + 4 $dmem.(rf.dest + offset) := rf.src1$
opc3 reg offset	$pc := \begin{cases} br_target & \text{if } br_taken \\ pc + 4 & \text{otherwise} \end{cases}, \text{ where} \\ br_target = target \ pc \ offset \end{cases}$
	$br_taken = taken \ opc3$ (rf.reg)

 $\begin{array}{ll} dest, src1, src2, reg: \mathsf{Reg} & imm, offset: \mathsf{Word} \\ opc1: \{\mathsf{add}, \mathsf{sub}, \mathsf{mult}\} & opc2: \{\mathsf{addi}, \mathsf{subi}, \mathsf{multi}\} & opc3: \{\mathsf{beqz}, \mathsf{bnez}, \mathsf{j}\} \end{array}$

Example: P = DLX

States of *P*: $\langle pc, rf, dmem, imem, p_1, p_2, p_3, p_4 \rangle$

[regular cycle]

[branch taken]

[stall for load]

- (1) p_4 writes back to rf and retires
- (2) p_3 does memory access
- $_{3}$ alu computes result/mem. address for p_{2}
- (4) p_1 gets data from rf or by forwarding; in the branch case, target/taken computed
- $_{5}$ new p'_{1} is fetched; pc incremented
- 6 like 4, plus updating pc with computed target

Simulating P in ISA

First need to map states of P to ISA states:

Flushing

Mapping states of P to ISA states:

The Burch-Dill Method for DLX

- * \mathcal{D} DLX states
- ***** dlx_step : $\mathcal{D} \rightarrow \mathcal{D}$ DLX transitions
- * $\alpha : \mathcal{D} \to \mathcal{I}$ flushing function

[CAV 94]

The Burch-Dill Method in General

- * $\mathcal{P} = \mathcal{I} \times \mathsf{PipeRegs}$ states of P
- ***** $p_step : \mathcal{P} \to \mathcal{P}$ transitions of P
- * $\alpha : \mathcal{P} \to \mathcal{I}$ flushing function
- * Correctness Theorem for P:

- * For proof, don't need defs of alu, target, taken, and only need basic read-write array properties of rf and mem
- * Correctness thm expressed in the language of SMT solvers
- * ... but it's huge for complex P. Must partition the thm.

Put a highly-nondeterministic "machine" MOP between P and ISA and deduce the P vs. ISA correctness from P vs. MOP and MOP vs. ISA.

- * MOP is derived from ISA and the features of P
- * MOP is the mother of many pipelines:

- * Out-of-order execution and non-determinism in P are OK
- * Potential to systematically partition correctness theorem

MOP: Starting Observations

- * One can formalize "instructions-in-flight" parcels
- * Parcels form a poset of finite height—progress ordering
- * With every state of P we can associate a set of parcels
- * At each cycle of execution of P:
 - pc, rf, mem get updated
 - some parcels get in (fetched)
 - some parcels get out (retired)
 - some parcels progress

Parcels

Parcel	_	$ \left\{ \begin{array}{l} instr : Instr_{\bot} \\ my_pc : IAddr_{\bot} \\ dest, src1, src2 : Reg_{\bot} \\ imm : Word_{\bot} \\ opc : Opcode_{\bot} \\ data1, data2 : Word_{\bot} \\ res, mem_addr : Word_{\bot} \\ res, mem_addr : Word_{\bot} \\ tkn : bool_{\bot} \\ next_pc : IAddr_{\bot} \\ wb : \{\bot, \top\} \\ pc_upd : \{\bot, \mathtt{s}, \mathtt{m}, \top\} \ \end{array} \right. $
		pc_upd : { \perp , s, m, \top }

Definition of *MOP*

States: $\mathcal{M} = \mathcal{I} \times \langle q : \mathbb{N} \to \mathsf{Parcel}, head : \mathbb{N}, tail : \mathbb{N} \rangle$

Transitions: Atomic actions occurring in executions

Transitions

def
$$p = q.j$$
decode jgrd $head \le j \le tail$ $\neg(decoded p)$ act $p := decode p$

* 16 more rules: data1_rf, data1_forward, result, mem_addr, write_back j, load j, store j, branch_target j, branch_taken j, next_pc_branch j, next_pc_nonbranch j, pc_update, speculate, prediction_ok j, squash, retire

Confluence

 $MOP^{\#} \equiv MOP$ without fetch

Theorem $MOP^{\#}$ is terminating.

Theorem Both MOP and $MOP^{\#}$ are locally confluent.

 $(\approx 400 \text{ little theorems})$

Local Confluence: About Proof

Flushing and Burch-Dill for *MOP*

Define

- flushed *MOP* state \equiv its *q*-component is empty
- * Given $m \in \mathcal{M}$, any $MOP^{\#}$ run $m \to m_1 \to m_2 \to \dots$
 - ... terminates ...
 - ... in the same final *flushed* state m'

Define

- $\alpha(m)$ = the *ISA*-component of m'
- ***** Burch-Dill **Theorem** for *MOP*:

 α (for any *MOP* rule ρ)

Simulating Microarchitectures in *MOP*

Theorem To verify P against ISA, it suffices to find $\beta \colon \mathcal{P} \to \mathcal{M}$ such that, for every $p \in P$, β (p_step p) is reachable from βp .

Proof:

Partitioning the Simulation Proof

* How to find a sequence of *MOP* transitions from *m* to *m*? • —Using sequence of "quasi *P*-states" from *p* to *p*?: $\langle v_1, v_2, v_3, \dots, v_n \rangle = p$

$$\langle v'_1, v_2, v_3, \dots, v_n \rangle = p_1 \sim \langle v'_1, v'_2, v_3, \dots, v_n \rangle = p_2 \sim \dots \sim \langle v'_1, v'_2, v'_3, \dots, v'_n \rangle = p_{n-1} \sim \langle v'_1, v'_2, v'_3, \dots, v'_n \rangle = p'$$

* ... get the corresponding MOP states $m, m_1, \ldots, m_{n-1}, m'$ and short MOP paths from m_i to m_{i+1} .

What We've Done

- * Models of ISA, MOP, DLX in reFLect
- * Local confluence proofs with CVCL
- * Simulation proofs for DLX (via short paths in MOP) with CVCL

To Do

- * Case study of an out-of-order processor model
- * Refining the method
 - Systematic ways of defining $\beta \colon \mathcal{P} \to \mathcal{M}$ and finding short paths to connect $\beta(p)$ with $\beta(p_step p)$ in MOP
 - Controlling term size in subgoals (heuristics for expanding function definitions vs. treating them as uninterpreted)
- ✤ Fast and flexible SMT solvers

Selection of Related Work

- ✤ Burch & Dill [CAV 94]
- * Damm & Pnueli [CHARME 97]
- * Shen & Arvind [Formal Techn. for Hardware 98]
- ★ Skakkebæk & al. [CAV 98]
- * Hosabettu & al. [CAV 00]
- * Lahiri & Bryant [CAV 03]
- Manolios & Srinivasan [ICCAD 05]